Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Practice Exercises - Page 308: 53

Answer

$$\frac{3}{5}{\left( {\frac{3}{4}} \right)^{5/2}}$$

Work Step by Step

$$\eqalign{ & \int_{1/8}^1 {{x^{ - 1/3}}{{\left( {1 - {x^{2/3}}} \right)}^{3/2}}} dx \cr & {\text{use the substitution method }} \cr & u = 1 - {x^{2/3}},\,\,\,\,du = - \frac{2}{3}{x^{ - 1/3}}dx,\,\,\,\,\,dx = - \frac{3}{2}{x^{1/3}}du \cr & {\text{Then}}{\text{,}} \cr & \int {{x^{ - 1/3}}{{\left( {1 - {x^{2/3}}} \right)}^{3/2}}} dx = \int {{x^{ - 1/3}}{u^{3/2}}} \left( { - \frac{3}{2}{x^{1/3}}du} \right) \cr & = - \frac{3}{2}\int {{u^{3/2}}} du \cr & {\text{integrate}} \cr & = - \frac{3}{2}\left( {\frac{{{u^{5/2}}}}{{5/2}}} \right) + C \cr & = - \frac{3}{5}{u^{5/2}} + C \cr & {\text{write in terms of }}r;{\text{ replace }}u = 1 - {x^{2/3}} \cr & = - \frac{3}{5}{\left( {1 - {x^{2/3}}} \right)^{5/2}} + C \cr & {\text{Then}}{\text{,}} \cr & \int_{1/8}^1 {{x^{ - 1/3}}{{\left( {1 - {x^{2/3}}} \right)}^{3/2}}} dx = - \frac{3}{5}\left( {{{\left( {1 - {x^{2/3}}} \right)}^{5/2}}} \right)_{1/8}^1 \cr & {\text{Evaluating, we get:}} \cr & = - \frac{3}{5}\left( {{{\left( {1 - {{\left( 1 \right)}^{2/3}}} \right)}^{5/2}} - {{\left( {1 - {{\left( {1/8} \right)}^{2/3}}} \right)}^{5/2}}} \right) \cr & = - \frac{3}{5}\left( {{{\left( 0 \right)}^{5/2}} - {{\left( {3/4} \right)}^{5/2}}} \right) \cr & = \frac{3}{5}{\left( {\frac{3}{4}} \right)^{5/2}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.