Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Practice Exercises - Page 308: 44

Answer

$$\frac{2}{3}{\left( {1 + \sec \theta } \right)^{3/2}} + C $$

Work Step by Step

$$\eqalign{ & \int {\left( {\sec \theta \tan \theta } \right)} \sqrt {1 + \sec \theta } d\theta \cr & {\text{use the substitution method }} \cr & u = 1 + \sec \theta,\,\,\,\,du = \sec \theta \tan \theta d\theta,\,\,\,\,\,d\theta = \frac{{du}}{{\sec \theta \tan \theta }} \cr & {\text{Then}}{\text{,}} \cr & \int {\left( {\sec \theta \tan \theta } \right)} \sqrt {1 + \sec \theta } d\theta = \int {\left( {\sec \theta \tan \theta } \right)} \sqrt u \left( {\frac{{du}}{{\sec \theta \tan \theta }}} \right) \cr & = \int {\sqrt u } du \cr & = \int {{u^{1/2}}} du \cr & {\text{integrate}} \cr & = \frac{{{u^{3/2}}}}{{3/2}} + C \cr & = \frac{2}{3}{u^{3/2}} + C \cr & {\text{write in terms of }}\theta;{\text{ replace }}u = 1 + \sec \theta \cr & = \frac{2}{3}{\left( {1 + \sec \theta } \right)^{3/2}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.