Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Practice Exercises - Page 308: 61

Answer

$$ - 1$$

Work Step by Step

$$\eqalign{ & \int_{ - \pi /3}^0 {\sec x\tan x} dx \cr & {\text{We know that}}\cr &\,\,\,\frac{d}{{d\theta }}\left[ {\sec \theta } \right] = \sec \theta \tan \theta \cr &{\text{Then}}{\text{,}} \cr & \int_{ - \pi /3}^0 {\sec x\tan x} dx = \left( {\sec x} \right)_{ - \pi /3}^0 \cr & {\text{Evaluate}} \cr & \left( {\sec x} \right)_{ - \pi /3}^0 = \sec \left( 0 \right) - \sec \left( { - \frac{\pi }{3}} \right) \cr & = \frac{1}{{\cos \left( 0 \right)}} - \frac{1}{{\cos \left( { - \pi /3} \right)}} \cr & {\text{Simplifying}} \cr & = \frac{1}{1} - \frac{1}{{1/2}} \cr & = 1 - 2 \cr & = - 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.