Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.6 - The Chain Rule - Exercises 3.6 - Page 148: 36

Answer

$-\dfrac{3\cos3t(3-2t)+2(1-\sin3t)}{(1+\sin3t)^2}$

Work Step by Step

Apply the Chain Rule, we get $g'(t)=-(\dfrac{1+\sin3t}{3-2t})^{-2}(\dfrac{1+\sin3t}{3-2t})'$ ...(1) Now, consider $(\dfrac{1+\sin3t}{3-2t})'=\dfrac{(1+\sin3t)'(3-2t)-(1+\sin3t)(3-2t)'}{(3-2t)^2}$ ; or, $(\dfrac{1+\sin3t}{3-2t})'=\dfrac{3\cos3t(3-2t)+2(1+\sin3t)}{(3-2t)^2}$ Equation (1), becomes: $g'(t)=-(\dfrac{1+\sin3t}{3-2t})^{-2}[\dfrac{3\cos3t(3-2t)+2(1+\sin3t)}{(3-2t)^2}]$ Thus, $g'(t)=-(\dfrac{(3-2t)^2}{(1+\sin3t)^2})[\dfrac{3\cos3t(3-2t)+2(1+\sin3t)}{(3-2t)^2}]=-\dfrac{3\cos3t(3-2t)+2(1-\sin3t)}{(1+\sin3t)^2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.