Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.6 - The Chain Rule - Exercises 3.6 - Page 148: 23

Answer

$$\frac{{dr}}{{d\theta }} = \frac{{\csc \theta }}{{\cot \theta + \csc \theta }}$$

Work Step by Step

$$\eqalign{ & r = {\left( {\csc \theta + \cot \theta } \right)^{ - 1}} \cr & {\text{differentiate with respect to }}\theta \cr & \frac{{dr}}{{d\theta }} = \frac{d}{{d\theta }}\left[ {{{\left( {\csc \theta + \cot \theta } \right)}^{ - 1}}} \right] \cr & \cr & {\text{using the chain rule }}\frac{d}{{d\theta }}\left[ {{u^n}} \right] = n{u^{n - 1}}\frac{{du}}{{d\theta }} \cr & \frac{{dr}}{{d\theta }} = - {\left( {\csc \theta + \cot \theta } \right)^{ - 2}}\frac{d}{{d\theta }}\left[ {\csc \theta + \cot \theta } \right] \cr & \cr & {\text{solving the derivatives}} \cr & \frac{{dr}}{{d\theta }} = - {\left( {\csc \theta + \cot \theta } \right)^{ - 2}}\left( { - \csc \theta \cot \theta - {{\csc }^2}\theta } \right) \cr & \cr & {\text{simplifying, we get:}} \cr & \frac{{dr}}{{d\theta }} = {\left( {\csc \theta + \cot \theta } \right)^{ - 2}}\left( {\csc \theta \cot \theta + {{\csc }^2}\theta } \right) \cr & \frac{{dr}}{{d\theta }} = \frac{{\csc \theta \cot \theta + {{\csc }^2}\theta }}{{{{\left( {\csc \theta + \cot \theta } \right)}^2}}} \cr & \frac{{dr}}{{d\theta }} = \frac{{\csc \theta \left( {\cot \theta + \csc \theta } \right)}}{{{{\left( {\csc \theta + \cot \theta } \right)}^2}}} \cr & \frac{{dr}}{{d\theta }} = \frac{{\csc \theta }}{{\cot \theta + \csc \theta }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.