Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.6 - The Chain Rule - Exercises 3.6 - Page 148: 34

Answer

$\dfrac{3\sec^2(3x)(x+7)-4\tan(3x)}{(x+7)^5}$

Work Step by Step

$g'(x)=\dfrac{(\tan3x)'(x+7)^4-\tan3x((x+7)^4)'}{(x+7)^8} $ Apply Chain Rule, we have $(\tan3x)'=(\sec^23x)(3x)'=3\sec^2(3x)$ and $[(x+7)^4]'=4(x+7)^3$ Thus, we get $g'(x)=\dfrac{3\sec^2(3x)(x+7)^4-4\tan(3x)(x+7)^3}{(x+7)^8}=\dfrac{3\sec^2(3x)(x+7)-4\tan(3x)}{(x+7)^5}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.