Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.6 - The Chain Rule - Exercises 3.6 - Page 148: 16

Answer

$$\frac{{dy}}{{dx}} = - \frac{1}{{{x^2}}}{\csc ^2}\left( {\pi - \frac{1}{x}} \right)$$

Work Step by Step

$$\eqalign{ & y = \cot \left( {\pi - \frac{1}{x}} \right) \cr & {\text{differentiate with respect to }}x \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {\cot \left( {\pi - \frac{1}{x}} \right)} \right] \cr & {\text{using the chain rule to }}\frac{d}{{dx}}\left[ {\cot u} \right] = - {\csc ^2}u\frac{{du}}{{dx}} \cr & \frac{{dy}}{{dx}} = - {\csc ^2}\left( {\pi - \frac{1}{x}} \right)\frac{d}{{dx}}\left[ {\pi - \frac{1}{x}} \right] \cr & {\text{solving the derivative, we get:}} \cr & \frac{{dy}}{{dx}} = - {\csc ^2}\left( {\pi - \frac{1}{x}} \right)\left( {\frac{1}{{{x^2}}}} \right) \cr & \frac{{dy}}{{dx}} = - \frac{1}{{{x^2}}}{\csc ^2}\left( {\pi - \frac{1}{x}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.