Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.6 - The Chain Rule - Exercises 3.6 - Page 148: 24

Answer

$$\frac{{dr}}{{d\theta }} = - 9\sec \theta {\left( {\sec \theta - \tan \theta } \right)^{3/2}}$$

Work Step by Step

$$\eqalign{ & r = 6{\left( {\sec \theta - \tan \theta } \right)^{3/2}} \cr & {\text{differentiate with respect to }}\theta \cr & \frac{{dr}}{{d\theta }} = \frac{d}{{d\theta }}\left[ {6{{\left( {\sec \theta - \tan \theta } \right)}^{3/2}}} \right] \cr & \cr & {\text{Using the chain rule }}\frac{d}{{d\theta }}\left[ {{u^n}} \right] = n{u^{n - 1}}\frac{{du}}{{d\theta }} \cr & \frac{{dr}}{{d\theta }} = 6\left( {\frac{3}{2}} \right){\left( {\sec \theta - \tan \theta } \right)^{3/2 - 1}}\frac{d}{{d\theta }}\left[ {\sec \theta - \tan \theta } \right] \cr & \frac{{dr}}{{d\theta }} = 9{\left( {\sec \theta - \tan \theta } \right)^{1/2}}\frac{d}{{d\theta }}\left[ {\sec \theta - \tan \theta } \right] \cr & \cr & {\text{solving the derivatives}} \cr & \frac{{dr}}{{d\theta }} = 9{\left( {\sec \theta - \tan \theta } \right)^{1/2}}\left( {\sec \theta \tan \theta - {{\sec }^2}\theta } \right) \cr & \cr & {\text{simplifying, we get:}} \cr & \frac{{dr}}{{d\theta }} = - 9\sec \theta {\left( {\sec \theta - \tan \theta } \right)^{1/2}}\left( {\sec \theta - \tan \theta } \right) \cr & \frac{{dr}}{{d\theta }} = - 9\sec \theta {\left( {\sec \theta - \tan \theta } \right)^{3/2}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.