Answer
$\tan(2\sqrt x)+\sqrt x\sec^2(2\sqrt x)$
Work Step by Step
Consider the derivative of $h(x)$ as follows;
$h'(x)=(x')\tan(2\sqrt x)+x(\tan(2\sqrt x))'+(0)=\tan(2\sqrt x)+x\sec^2(2\sqrt x)(2x^{1/2})$
This implies that $h'(x)=\tan(2\sqrt x)+x\sec^2(2\sqrt x)[2\times(\dfrac{1}{2})x^{-(1/2)}]=\tan(2\sqrt x]+\sqrt x\sec^2(2\sqrt x)$