Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.2 Trigonometric Integrals - Exercises - Page 403: 6

Answer

$$\frac{1}{3} \sin ^{3} x-\frac{2}{5}\sin ^{5} x+\frac{1}{7}\sin ^{7} x+c$$

Work Step by Step

\begin{aligned} \int \sin ^{2} x \cos ^{5} x d x &=\int \sin ^{2} x \cos ^{4} x \cos x d x \\ &=\int \sin ^{2} x\left(1-\sin ^{2} x\right)^{2} \cos x d x \\ &=\int \sin ^{2} x\left(1-2\sin ^{2} x+\sin ^{4} x\right) \cos x d x \\ &=\int \left(\sin ^{2} x-2\sin ^{4} x+\sin ^{6} x\right) \cos x d x \\ &=\frac{1}{3} \sin ^{3} x-\frac{2}{5}\sin ^{5} x+\frac{1}{7}\sin ^{7} x+c \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.