Answer
$$\frac{2}{15}$$
Work Step by Step
\begin{align*}
\int_{0}^{ \pi/2}\sin^2x\cos^3 xdx&= \int_{0}^{ \pi/2}\sin^2x\cos^2 x\cos xdx \\
&= \int_{0}^{ \pi/2}\sin^2x (1-\sin^2x) \cos xdx \\
&=\int_{0}^{ \pi/2} (\sin^2x-\sin^4x) \cos xdx \\
&= \left( \frac{1}{3}\sin^3x -\frac{1}{5}\sin^5x \right) \bigg|_{0}^{\pi/2}\\
&=\frac{2}{15}
\end{align*}