Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.2 Trigonometric Integrals - Exercises - Page 403: 48

Answer

$$\tan e^x-e^x +c$$

Work Step by Step

Given $$\int e^x\tan^2(e^x)dx $$ Let $$ u =e^x\ \ \ \to \ \ \ du=e^xdx $$ Then \begin{align*} \int e^x\tan^2(e^x)dx &= \int \tan^2udu\\ &= \int (\sec^2u-1)du\\ &=\tan u-u +c\\ &= \tan e^x-e^x +c \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.