Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.2 Trigonometric Integrals - Exercises - Page 403: 14

Answer

$$\frac{\sin ^{3} x \cos ^{3} x}{6}+\frac{3}{6}\left( \frac{\sin ^{3} x \cos x}{4}+\frac{ 1}{8} [x-\frac{1}{2}\sin2x] \right)+C$$

Work Step by Step

Since $$\int \sin ^{m} x \cos ^{n} x d x=\frac{\sin ^{m+1} x \cos ^{n-1} x}{m+n}+\frac{n-1}{m+n} \int \sin ^{m} x \cos ^{n-2} x d x$$ Then for $m=2,\ n=4$, we get \begin{align*} \int \sin ^{2} x \cos ^{4} x d x&=\frac{\sin ^{3} x \cos ^{3} x}{6}+\frac{3}{6} \int \sin ^{2} x \cos ^{2} x d x\\ &= \frac{\sin ^{3} x \cos ^{3} x}{6}+\frac{3}{6}\left( \frac{\sin ^{3} x \cos x}{4}+\frac{ 1}{4} \int \sin ^{2} x d x \right)\\ &= \frac{\sin ^{3} x \cos ^{3} x}{6}+\frac{3}{6}\left( \frac{\sin ^{3} x \cos x}{4}+\frac{ 1}{8} \int (1-\cos 2x) d x \right)\\ &=\frac{\sin ^{3} x \cos ^{3} x}{6}+\frac{3}{6}\left( \frac{\sin ^{3} x \cos x}{4}+\frac{ 1}{8} [x-\frac{1}{2}\sin2x] \right)+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.