Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.2 Trigonometric Integrals - Exercises - Page 403: 31

Answer

$$\frac{-1}{2}\sin^{-2}x -2\ln \sin x +\frac{1}{2}\sin^2 x+c$$

Work Step by Step

\begin{align*} \int \frac{\cos ^{5} x}{\sin ^{3} x} d x&= \int \sin^{-3}x\cos^4x\cos xdx\\ &= \int \sin^{-3}x(1-\sin^2x)^2\cos xdx\\ &=\int \sin^{-3}x(1-2\sin^2 x+\sin^4x)\cos xdx\\ &= \int \left( \sin^{-3}x -2\frac{1}{\sin x} + \sin x\right)\cos xdx\\ &= \frac{-1}{2}\sin^{-2}x -2\ln \sin x +\frac{1}{2}\sin^2 x+c \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.