Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.2 Trigonometric Integrals - Exercises - Page 403: 2

Answer

$$-\cos x+\frac{2}{3} \cos ^{3} x-\frac{1}{5} \cos ^{5} x+c $$

Work Step by Step

Given $$\int \sin ^{5} x d x = \int (1-\cos^2x)^2\sin x d x $$ Let $$u= \cos x\ \ \to \ \ du=-\sin xdx $$ Then \begin{aligned} \int \sin ^{5} x d x &=\int\left(1-\cos ^{2} x\right)^{2} \sin x d x \\ &=-\int\left(1-u^{2}\right)^{2} d u \\ &=-\int\left(1-2 u^{2}+u^{4}\right) d u \\ &=-\left[u-2 \frac{u^{3}}{3}+\frac{u^{5}}{5}\right]+C \\ &=-u+2 \frac{u^{3}}{3}-\frac{u^{5}}{5}+C \\ &=-\cos x+\frac{2}{3} \cos ^{3} x-\frac{1}{5} \cos ^{5} x+c \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.