Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.2 Trigonometric Integrals - Exercises - Page 403: 38

Answer

$$\frac{1}{4} \tan x \sec ^{3} x-\frac{5}{8} \tan x \sec x+\frac{3}{8} \ln |\sec x+\tan x|+C$$

Work Step by Step

Use $$\int \sec ^{m} x d x=\frac{\tan x \sec ^{m-2} x}{m-1}+\frac{m-2}{m-1} \int \sec ^{m-2} x d x$$ Then \begin{align*} \int \tan ^{4} x \sec x d x&=\int\left(\sec ^{2} x-1\right)^{2} \sec x d x\\ &=\int \sec ^{5} x d x-2 \int \sec ^{3} x d x+\int \sec x d x\\ &=\left(\frac{1}{4} \tan x \sec ^{3} x+\frac{3}{4} \int \sec ^{3} x d x\right)-2 \int \sec ^{3} x d x+\int \sec x d x\\ &=\frac{1}{4} \tan x \sec ^{3} x-\frac{5}{4} \int \sec ^{3} x d x+\int \sec x d x\\ &=\frac{1}{4} \tan x \sec ^{3} x-\frac{5}{4}\left(\frac{1}{2} \tan x \sec x+\frac{1}{2} \int \sec x d x\right)+\int \sec x d x\\ &=\frac{1}{4} \tan x \sec ^{3} x-\frac{5}{8} \tan x \sec x+\frac{3}{8} \int \sec x d x\\ &=\frac{1}{4} \tan x \sec ^{3} x-\frac{5}{8} \tan x \sec x+\frac{3}{8} \ln |\sec x+\tan x|+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.