Answer
$$\frac{1}{2} \tan x \sec x+\frac{1}{2}\ln |\sec x+\tan x|+c$$
Work Step by Step
Since
$$\int \sec ^{m} x d x=\frac{\tan x \sec ^{m-2} x}{m-1}+\frac{m-2}{m-1} \int \sec ^{m-2} x d x$$
Then \begin{align*}
\int \sec ^{3} x d x&=\frac{1}{2} \tan x \sec x+\frac{1}{2} \int \sec x d x\\
&=\frac{1}{2} \tan x \sec x+\frac{1}{2}\ln |\sec x+\tan x|+c
\end{align*}