Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.2 Trigonometric Integrals - Exercises - Page 403: 22

Answer

$-\frac{1}{4}cotx(cscx^{3}x)+\frac{5}{8}cotx(cscx)-\frac{3}{8}\ln|cscx+cotx|+C$

Work Step by Step

$cot^{2}x$ = $csc^{2}x-1$ ${\int}cot^{4}x(cscx)dx$ = $\int(csc^{2}x-1)^{2}cscxdx$ = ${\int}[csc^{5}x-2csc^{3}x+cscx]dx$ apply reduction formla ${\int}csc^{3}xdx$ = $-\frac{1}{2}cotx(cscx)+\frac{1}{2}\int(cscx)dx$ = $-\frac{1}{2}cotx(cscx)-\frac{1}{2}\ln|cscx+cotx|+C$ so that ${\int}csc^{5}xdx$ = $-\frac{1}{4}cotx(cscx^{3}x)+\frac{3}{4}{\int}cscx^{3}xdx$ = $-\frac{1}{4}cotx(cscx^{3}x)-\frac{3}{4}(\frac{1}{2}cotx(cscx)+\frac{1}{2}\ln|cscx+cotx|)+C$ = $-\frac{1}{4}cotx(cscx^{3}x)-\frac{3}{8}cotx(cscx)-\frac{3}{8}\ln|cscx+cotx|+C$ so ${\int}cot^{4}x(cscx)dx$ = ${\int}csc^{5}xdx-2{\int}csc^{3}xdx+{\int}cscxdx$ = $-\frac{1}{4}cotx(cscx^{3}x)-\frac{3}{8}cotx(cscx)-\frac{3}{8}\ln|cscx+cotx|+cotx(cscx)+ln|cscx+cotx|-ln|cscx+cotx|+C$ = $-\frac{1}{4}cotx(cscx^{3}x)+\frac{5}{8}cotx(cscx)-\frac{3}{8}\ln|cscx+cotx|+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.