Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.2 Trigonometric Integrals - Exercises - Page 403: 5

Answer

$$-\frac{1}{4} \cos ^{4} t+\frac{1}{6} \cos ^{6} t+c$$

Work Step by Step

\begin{aligned} \int \sin ^{3} t \cos ^{3} t d t &=\int \sin ^{2} t \sin t \cos ^{3} t d t \\ &=\int\left(1-\cos ^{2} t\right) \sin t \cos ^{3} t d t \\ &=\int\left(\cos ^{3} t-\cos ^{5} t\right) \sin t d t \\ &=-\frac{1}{4} \cos ^{4} t+\frac{1}{6} \cos ^{6} t+c \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.