Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.2 Trigonometric Integrals - Exercises - Page 403: 56

Answer

$$-\frac{1}{4}+\frac{1}{2}\ln \left(2\right)$$

Work Step by Step

\begin{align*} \int_{0}^{\pi / 4} \tan^5xdx&=\int_{0}^{\pi / 4} \tan^3x \tan^2x dx\\ &=\int_{0}^{\pi / 4} \tan^3x ( \sec^2x-1) dx\\ &=\int_{0}^{\pi / 4} \tan^3x \sec^2x-\int_{0}^{\pi / 4} \tan^3x dx\\ &=\int_{0}^{\pi / 4} \tan^3x \sec^2x-\int_{0}^{\pi / 4} (\sec^2 x-1)\tan x dx\\ &= \frac{1}{4}\tan^4 x-\frac{1}{2}\tan^2 x +\ln \sec x\bigg|_{0}^{\pi/4}\\ &=-\frac{1}{4}+\frac{1}{2}\ln \left(2\right) \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.