Answer
$$ f'(x)
=e^{ x^{x }}(x^{x})(\ln x+1).$$
Work Step by Step
Recall that $(e^x)'=e^x $, $(\ln x)'=\dfrac{1}{x}$.
We have
$$ f(x)=e^{x^x}=e^{ e^{x\ln x}}.$$
Now taking the derivative, we get
$$ f'(x)= e^{ e^{x\ln x}}(e^{x\ln x})'=e^{ e^{x\ln x}}(e^{x\ln x})(\ln x+1)\\
=e^{ x^{x }}(x^{x})(\ln x+1).$$