Answer
$$ y' =\frac{1}{t}+\ln 5.$$
Work Step by Step
Recall the product rule: $(uv)'=u'v+uv'$
Recall that $(\ln x)'=\dfrac{1}{x}$
Recall that $(e^x)'=e^x$
Since $ y=\ln(t5^t)$, then we have
$$ y'=\frac{ 5^t+t 5^t \ln 5}{t5^t}=\frac{1+t \ln 5}{t }=\frac{1}{t}+\ln 5.$$