Answer
$$s=-(t-1)+\ln 4$$
Work Step by Step
Given $$s(t)=\ln (8-4 t) \quad t=1$$
Since at $t=1$, $s(t) = \ln 4$ and
$$s'(t)= \frac{-4}{8-4t} $$
Then $ m= s'(t)\bigg|_{t=1}=-1$
Hence, the tangent line is given by
\begin{align*}
\frac{s-s_1}{t- t_1}&=m\\
\frac{s-\ln 4}{t- 1}&=-1 \\
s&=-(t-1)+\ln 4
\end{align*}