Answer
$$y = \frac{1}{5}$$
Work Step by Step
Given $$f(x)=5^{x^{2}-2 x}, \quad x=1$$
Since at $x=1$, $y= 1/5$ and
$$f'(x)= 5^{x^{2}-2 x} \ln 5 \frac{d}{dx} (x^{2}-2 x ) =\left(5^{x^{2}-2 x}\right)(\ln 5)(2 x-2)$$
Then $ m= f'(x)\bigg|_{x=1}=0$
Hence, the tangent line is given by
\begin{align*}
\frac{y-y_1}{x- x_1}&=m\\
\frac{y-1/5 }{x-1}&=0 \\
y&= \frac{1}{5}
\end{align*}