Answer
$$s=\frac{1}{5}(t-5)+\ln 5$$
Work Step by Step
Given $$s(t)=\ln t, \quad t=5$$
Since at $t=5$, $s(t) = \ln 5$ and
$$s'(t)= \frac{1}{t} $$
Then $ m= s'(t)\bigg|_{t=5}=\dfrac{1}{5}$
Hence, the tangent line is given by
\begin{align*}
\frac{s-s_1}{t- t_1}&=m\\
\frac{s-\ln 5}{t- 5}&=\dfrac{1}{5} \\
s&=\frac{1}{5}(t-5)+\ln 5
\end{align*}