Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 7 - Exponential Functions - 7.3 Logarithms and Their Derivatives - Exercises - Page 343: 105

Answer

$$-\frac{2^{-(3x+2)}}{3\ln 2} +c $$

Work Step by Step

We have $$\int \left(\frac{1}{2}\right)^{3x+2}dx = \int 2^{-(3x+2)} dx. $$ Let $ u=2^{-(3x+2)} $, then $ du=-(3\ln 2) \ 2^{-(3x+2)} dx $ and hence $$\int \left(\frac{1}{2}\right)^{3x+2}dx = \int 2^{-(3x+2)} dx\\ = -\frac{1}{3\ln 2} \int du=-\frac{1}{3\ln 2}u +c\\ =-\frac{2^{-(3x+2)}}{3\ln 2} +c. $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.