Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.1 Integration in Two Variables - Exercises - Page 847: 53

Answer

(a) The function $f\left( x \right) = \frac{{{{\rm{e}}^{ - x}} - {{\rm{e}}^{ - ax}}}}{x}$ is not defined at $x=0$. Here, we show that it can be made continuous by assigning the value $f\left( 0 \right) = a - 1$. That is, $f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {\frac{{{{\rm{e}}^{ - x}} - {{\rm{e}}^{ - ax}}}}{x}}&{{\rm{for{\ } }}x \ne 0}\\ {a - 1}&{{\rm{for{\ } }}x = 0} \end{array}} \right.$ (b) We prove that $\left| {f\left( x \right)} \right| \le {{\rm{e}}^{ - x}} + {{\rm{e}}^{ - ax}}$ for $x>1$. Applying the Comparison Theorem, we show that $I\left( a \right) = \mathop \smallint \limits_0^\infty \frac{{{{\rm{e}}^{ - x}} - {{\rm{e}}^{ - ax}}}}{x}{\rm{d}}x$ converges. (c) We show that $I\left( a \right) = \mathop \smallint \limits_0^\infty \mathop \smallint \limits_1^a {{\rm{e}}^{ - xy}}{\rm{d}}y{\rm{d}}x$ (d) Using Fubini's Theorem, we prove that $I\left( a \right) = \ln a - \mathop {\lim }\limits_{T \to \infty } \mathop \smallint \limits_1^a \frac{{{{\rm{e}}^{ - Ty}}}}{y}{\rm{d}}y$ (e) Using the Comparison Theorem, we show that $\mathop {\lim }\limits_{T \to \infty } \mathop \smallint \limits_1^a \frac{{{{\rm{e}}^{ - Ty}}}}{y}{\rm{d}}y = 0$ Therefore, $I\left( a \right) = \ln a$

Work Step by Step

(a) Write $f\left( x \right) = \frac{{{{\rm{e}}^{ - x}} - {{\rm{e}}^{ - ax}}}}{x}$. We notice that $f\left( x \right)$ is not defined at $x=0$, hence it is not continuous at $x=0$. Now, we evaluate the limit $\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{{{\rm{e}}^{ - x}} - {{\rm{e}}^{ - ax}}}}{x}$ Using L'Hôpital's Rule (Theorem 1 of Section 7.7), we obtain $\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{{{\rm{e}}^{ - x}} - {{\rm{e}}^{ - ax}}}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{ - {{\rm{e}}^{ - x}} + a{{\rm{e}}^{ - ax}}}}{1} = - 1 + a$ If we define the function $f\left( x \right)$ such that $f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {\frac{{{{\rm{e}}^{ - x}} - {{\rm{e}}^{ - ax}}}}{x}}&{{\rm{for{\ } }}x \ne 0}\\ {a - 1}&{{\rm{for{\ } }}x = 0} \end{array}} \right.$ then $f\left( x \right)$ is continuous by definition of continuity (Section 2.4). Hence, $f\left( x \right) = \frac{{{{\rm{e}}^{ - x}} - {{\rm{e}}^{ - ax}}}}{x}$, though not defined at $x=0$, can be made continuous by assigning the value $f\left( 0 \right) = a - 1$. (b) From the result in part (a), we have the function: $f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {\frac{{{{\rm{e}}^{ - x}} - {{\rm{e}}^{ - ax}}}}{x}}&{{\rm{for{\ } }}x \ne 0}\\ {a - 1}&{{\rm{for{\ } }}x = 0} \end{array}} \right.$ such that $f\left( x \right)$ is continuous. For $x>1$, we can simply write $f\left( x \right) = \frac{{{{\rm{e}}^{ - x}} - {{\rm{e}}^{ - ax}}}}{x}$. $f\left( x \right) = \frac{{{{\rm{e}}^{ - x}}}}{x} + \left( { - \frac{{{{\rm{e}}^{ - ax}}}}{x}} \right)$ Using the triangle inequality (Eq. (1) of Section 1.1), we obtain $\left| {f\left( x \right)} \right| = \left| {\frac{{{{\rm{e}}^{ - x}}}}{x} + \left( { - \frac{{{{\rm{e}}^{ - ax}}}}{x}} \right)} \right| \le \left| {\frac{{{{\rm{e}}^{ - x}}}}{x}} \right| + \left| { - \frac{{{{\rm{e}}^{ - ax}}}}{x}} \right|$ $\left| {f\left( x \right)} \right| \le \frac{1}{{\left| x \right|}}\left( {\left| {{{\rm{e}}^{ - x}}} \right| + \left| {{{\rm{e}}^{ - ax}}} \right|} \right)$ Since ${{\rm{e}}^{ - x}} > 0$ and ${{\rm{e}}^{ - ax}} > 0$; for $x>1$ we can remove the absolute signs. So, $\left| {f\left( x \right)} \right| \le \frac{1}{x}\left( {{{\rm{e}}^{ - x}} + {{\rm{e}}^{ - ax}}} \right)$ Since $\frac{1}{x}\left( {{{\rm{e}}^{ - x}} + {{\rm{e}}^{ - ax}}} \right) \le {{\rm{e}}^{ - x}} + {{\rm{e}}^{ - ax}}$, so (1) ${\ \ \ \ }$ $\left| {f\left( x \right)} \right| \le {{\rm{e}}^{ - x}} + {{\rm{e}}^{ - ax}}$ Recall the Comparison Theorem (Theorem 5 of Section 5.2) which states that if $f$ and $g$ are integrable and $f\left( x \right) \le g\left( x \right)$, then $\mathop \smallint \limits_a^b f\left( x \right){\rm{d}}x \le \mathop \smallint \limits_a^b g\left( x \right){\rm{d}}x$ Applying the Comparison Theorem to equation (1) we obtain $\mathop \smallint \limits_0^\infty \left| {f\left( x \right)} \right|{\rm{d}}x \le \mathop \smallint \limits_0^\infty \left( {{{\rm{e}}^{ - x}} + {{\rm{e}}^{ - ax}}} \right){\rm{d}}x$ Since $f\left( x \right) = \frac{{{{\rm{e}}^{ - x}} - {{\rm{e}}^{ - ax}}}}{x}$, so $\mathop \smallint \limits_0^\infty \left| {\frac{{{{\rm{e}}^{ - x}} - {{\rm{e}}^{ - ax}}}}{x}} \right|{\rm{d}}x \le \mathop \smallint \limits_0^\infty \left( {{{\rm{e}}^{ - x}} + {{\rm{e}}^{ - ax}}} \right){\rm{d}}x$ For $a>0$ and $x>1$, we have ${{\rm{e}}^{ - x}} \ge {{\rm{e}}^{ - ax}}$. So, we can remove the absolute sign and write $\mathop \smallint \limits_0^\infty \frac{{{{\rm{e}}^{ - x}} - {{\rm{e}}^{ - ax}}}}{x}{\rm{d}}x \le \mathop \smallint \limits_0^\infty \left( {{{\rm{e}}^{ - x}} + {{\rm{e}}^{ - ax}}} \right){\rm{d}}x$ We know that the right-hand side yields $\mathop \smallint \limits_0^\infty \left( {{{\rm{e}}^{ - x}} + {{\rm{e}}^{ - ax}}} \right){\rm{d}}x = \mathop \smallint \limits_0^\infty {{\rm{e}}^{ - x}}{\rm{d}}x + \mathop \smallint \limits_0^\infty {{\rm{e}}^{ - ax}}{\rm{d}}x$ $ = \mathop {\lim }\limits_{P \to \infty } \mathop \smallint \limits_0^P {{\rm{e}}^{ - x}}{\rm{d}}x + \mathop {\lim }\limits_{P \to \infty } \mathop \smallint \limits_0^P {{\rm{e}}^{ - ax}}{\rm{d}}x$ $ = - \mathop {\lim }\limits_{P \to \infty } \left( {{{\rm{e}}^{ - x}}|_0^P} \right) - \frac{1}{a}\mathop {\lim }\limits_{P \to \infty } \left( {{{\rm{e}}^{ - ax}}|_0^P} \right)$ $ = - \mathop {\lim }\limits_{P \to \infty } \left( {{{\rm{e}}^{ - P}} - 1} \right) - \frac{1}{a}\mathop {\lim }\limits_{P \to \infty } \left( {{{\rm{e}}^{ - aP}} - 1} \right)$ $ = 1 + \frac{1}{a}$ Therefore, $\mathop \smallint \limits_0^\infty \frac{{{{\rm{e}}^{ - x}} - {{\rm{e}}^{ - ax}}}}{x}{\rm{d}}x \le 1 + \frac{1}{a}$. This implies that $I\left( a \right) = \mathop \smallint \limits_0^\infty \frac{{{{\rm{e}}^{ - x}} - {{\rm{e}}^{ - ax}}}}{x}{\rm{d}}x$ converges. (c) Evaluate $\mathop \smallint \limits_1^a {{\rm{e}}^{ - xy}}{\rm{d}}y$. $\mathop \smallint \limits_1^a {{\rm{e}}^{ - xy}}{\rm{d}}y = - \frac{1}{x}{{\rm{e}}^{ - xy}}|_1^a = - \frac{1}{x}{{\rm{e}}^{ - ax}} + \frac{1}{x}{{\rm{e}}^{ - x}} = \frac{{{{\rm{e}}^{ - x}} - {{\rm{e}}^{ - ax}}}}{x}$ So, we write the double integral: $\mathop \smallint \limits_0^\infty \mathop \smallint \limits_1^a {{\rm{e}}^{ - xy}}{\rm{d}}y{\rm{d}}x = \mathop \smallint \limits_0^\infty \frac{{{{\rm{e}}^{ - x}} - {{\rm{e}}^{ - ax}}}}{x}{\rm{d}}x$ Since $I\left( a \right) = \mathop \smallint \limits_0^\infty \frac{{{{\rm{e}}^{ - x}} - {{\rm{e}}^{ - ax}}}}{x}{\rm{d}}x$, we conclude that $I\left( a \right) = \mathop \smallint \limits_0^\infty \mathop \smallint \limits_1^a {{\rm{e}}^{ - xy}}{\rm{d}}y{\rm{d}}x$ (d) From part (c) we obtain $I\left( a \right) = \mathop \smallint \limits_0^\infty \mathop \smallint \limits_1^a {{\rm{e}}^{ - xy}}{\rm{d}}y{\rm{d}}x$ Using Fubini's Theorem to change the order of integration and re-write the integral: $I\left( a \right) = \mathop \smallint \limits_0^\infty \mathop \smallint \limits_1^a {{\rm{e}}^{ - xy}}{\rm{d}}y{\rm{d}}x = \mathop \smallint \limits_{y = 1}^a \left( {\mathop \smallint \limits_{x = 0}^\infty {{\rm{e}}^{ - xy}}{\rm{d}}x} \right){\rm{d}}y$ $ = \mathop \smallint \limits_{y = 1}^a \left( {\mathop {\lim }\limits_{T \to \infty } \mathop \smallint \limits_{x = 0}^T {{\rm{e}}^{ - xy}}{\rm{d}}x} \right){\rm{d}}y$ $ = \mathop \smallint \limits_{y = 1}^a \left( {\mathop { - \lim }\limits_{T \to \infty } \frac{1}{y}\left( {{{\rm{e}}^{ - Ty}} - 1} \right)} \right){\rm{d}}y$ $ = \mathop \smallint \limits_{y = 1}^a \left( {\mathop { - \lim }\limits_{T \to \infty } \frac{1}{y}{{\rm{e}}^{ - Ty}} + \frac{1}{y}} \right){\rm{d}}y$ $ = - \mathop \smallint \limits_{y = 1}^a \left( {\mathop {\lim }\limits_{T \to \infty } \frac{1}{y}{{\rm{e}}^{ - Ty}}} \right){\rm{d}}y + \mathop \smallint \limits_{y = 1}^a \frac{1}{y}{\rm{d}}y$ $ = - \mathop {\lim }\limits_{T \to \infty } \mathop \smallint \limits_1^a \frac{{{{\rm{e}}^{ - Ty}}}}{y}{\rm{d}}y + \ln y|_1^a$ $ = - \mathop {\lim }\limits_{T \to \infty } \mathop \smallint \limits_1^a \frac{{{{\rm{e}}^{ - Ty}}}}{y}{\rm{d}}y + \ln a$ Hence, $I\left( a \right) = \ln a - \mathop {\lim }\limits_{T \to \infty } \mathop \smallint \limits_1^a \frac{{{{\rm{e}}^{ - Ty}}}}{y}{\rm{d}}y$. (e) From the result in part (d), we obtain $I\left( a \right) = \ln a - \mathop {\lim }\limits_{T \to \infty } \mathop \smallint \limits_1^a \frac{{{{\rm{e}}^{ - Ty}}}}{y}{\rm{d}}y$. Here we show that: $\mathop {\lim }\limits_{T \to \infty } \mathop \smallint \limits_1^a \frac{{{{\rm{e}}^{ - Ty}}}}{y}{\rm{d}}y$ is equal to zero. Case 1. $a \ge 1$ Since ${{\rm{e}}^{ - Ty}} \ge 0$, for $y \ge 1$ we have $0 \le \frac{{{{\rm{e}}^{ - Ty}}}}{y} \le {{\rm{e}}^{ - T}}$. Applying the Comparison Theorem as in part (b) gives $0 \le \mathop \smallint \limits_1^a \frac{{{{\rm{e}}^{ - Ty}}}}{y}{\rm{d}}y \le \mathop \smallint \limits_1^a {{\rm{e}}^{ - T}}{\rm{d}}y$ Since $\mathop \smallint \limits_1^a {{\rm{e}}^{ - T}}{\rm{d}}y = {{\rm{e}}^{ - T}}\left( {a - 1} \right)$, so $0 \le \mathop \smallint \limits_1^a \frac{{{{\rm{e}}^{ - Ty}}}}{y}{\rm{d}}y \le {{\rm{e}}^{ - T}}\left( {a - 1} \right)$ Applying the limit gives $0 \le \mathop {\lim }\limits_{T \to \infty } \mathop \smallint \limits_1^a \frac{{{{\rm{e}}^{ - Ty}}}}{y}{\rm{d}}y \le \mathop {\lim }\limits_{T \to \infty } {{\rm{e}}^{ - T}}\left( {a - 1} \right)$ But $\mathop {\lim }\limits_{T \to \infty } {{\rm{e}}^{ - T}}\left( {a - 1} \right) = 0$. Thus, by Squeeze Theorem (Theorem 1 of Section 2.6): $\mathop {\lim }\limits_{T \to \infty } \mathop \smallint \limits_1^a \frac{{{{\rm{e}}^{ - Ty}}}}{y}{\rm{d}}y = 0$ Case 2. $0 < a < 1$ Since ${{\rm{e}}^{ - Ty}} \ge 0$, for $a \le y \le 1$ we have $0 \le \frac{{{{\rm{e}}^{ - Ty}}}}{y} \le \frac{{{{\rm{e}}^{ - aT}}}}{a}$. Applying the Comparison Theorem as in part (b) gives $0 \le \mathop \smallint \limits_1^a \frac{{{{\rm{e}}^{ - Ty}}}}{y}{\rm{d}}y \le \mathop \smallint \limits_1^a \frac{{{{\rm{e}}^{ - aT}}}}{a}{\rm{d}}y$ Since $\mathop \smallint \limits_1^a \frac{{{{\rm{e}}^{ - aT}}}}{a}{\rm{d}}y = \frac{{{{\rm{e}}^{ - aT}}}}{a}\left( {a - 1} \right)$, so $0 \le \mathop \smallint \limits_1^a \frac{{{{\rm{e}}^{ - Ty}}}}{y}{\rm{d}}y \le \frac{{{{\rm{e}}^{ - aT}}}}{a}\left( {a - 1} \right)$ Applying the limit gives $0 \le \mathop {\lim }\limits_{T \to \infty } \mathop \smallint \limits_1^a \frac{{{{\rm{e}}^{ - Ty}}}}{y}{\rm{d}}y \le \mathop {\lim }\limits_{T \to \infty } \frac{{{{\rm{e}}^{ - aT}}}}{a}\left( {a - 1} \right)$ But $\mathop {\lim }\limits_{T \to \infty } \frac{{{{\rm{e}}^{ - aT}}}}{a}\left( {a - 1} \right) = 0$. Thus, by Squeeze Theorem: $\mathop {\lim }\limits_{T \to \infty } \mathop \smallint \limits_1^a \frac{{{{\rm{e}}^{ - Ty}}}}{y}{\rm{d}}y = 0$ Hence, from both cases we conclude that $\mathop {\lim }\limits_{T \to \infty } \mathop \smallint \limits_1^a \frac{{{{\rm{e}}^{ - Ty}}}}{y}{\rm{d}}y = 0$ Therefore, $I\left( a \right) = \ln a - \mathop {\lim }\limits_{T \to \infty } \mathop \smallint \limits_1^a \frac{{{{\rm{e}}^{ - Ty}}}}{y}{\rm{d}}y = \ln a$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.