Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.1 Integration in Two Variables - Exercises - Page 847: 51

Answer

We show that $\frac{{{\partial ^2}F}}{{\partial x\partial y}} = y{{\rm{e}}^{xy}}$ Using the result of Exercise 50, we evaluate: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} y{{\rm{e}}^{xy}}{\rm{d}}A \simeq 4.64356$

Work Step by Step

We have $F\left( {x,y} \right) = {x^{ - 1}}{{\rm{e}}^{xy}}$. So, the partial derivatives are $\frac{{\partial F}}{{\partial y}} = {{\rm{e}}^{xy}}$, ${\ \ \ \ }$ $\frac{{{\partial ^2}F}}{{\partial x\partial y}} = y{{\rm{e}}^{xy}}$ Recall from the result of Exercise 50: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} f\left( {x,y} \right){\rm{d}}A = F\left( {b,d} \right) - F\left( {a,d} \right) - F\left( {b,c} \right) + F\left( {a,c} \right)$ where $f\left( {x,y} \right) = \frac{{{\partial ^2}F}}{{\partial x\partial y}}$ and ${\cal R} = \left[ {a,b} \right] \times \left[ {c,d} \right]$. We have $f\left( {x,y} \right) = \frac{{{\partial ^2}F}}{{\partial x\partial y}} = y{{\rm{e}}^{xy}}$. Since ${\cal R} = \left[ {1,3} \right] \times \left[ {0,1} \right]$, using the result of Exercise 50 we get $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} f\left( {x,y} \right){\rm{d}}A = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} y{{\rm{e}}^{xy}}{\rm{d}}A$ $ = F\left( {3,1} \right) - F\left( {1,1} \right) - F\left( {3,0} \right) + F\left( {1,0} \right)$ $ = \frac{{{{\rm{e}}^3}}}{3} - {\rm{e}} - \frac{1}{3} + 1$ $ = \frac{{{{\rm{e}}^3}}}{3} - {\rm{e}} + \frac{2}{3}$ $ \simeq 4.64356$ So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} y{{\rm{e}}^{xy}}{\rm{d}}A \simeq 4.64356$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.