Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.1 Integration in Two Variables - Exercises - Page 847: 49

Answer

Using Fubini's Theorem we show that the solid has volume: $V = AL$.

Work Step by Step

Referring to Figure 18, let the region on the $xy$-plane be ${\cal R} = \left[ {0,L} \right] \times \left[ {0,d} \right]$. So, the volume $V$ is given by $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R} f\left( {x,y} \right){\rm{d}}y{\rm{d}}x$ Assuming that $f\left( {x,y} \right)$ is continuous, thus by Fubini's Theorem the double integral can be written as an iterated integral: $V = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R} f\left( {x,y} \right){\rm{d}}y{\rm{d}}x = \mathop \smallint \limits_{x = 0}^L \left( {\mathop \smallint \limits_{y = 0}^d f\left( {x,y} \right){\rm{d}}y} \right){\rm{d}}x$ But $\mathop \smallint \limits_{y = 0}^d f\left( {x,y} \right){\rm{d}}y$ is the area $A$, that is, the area of the front face of the solid. So, $V = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R} f\left( {x,y} \right){\rm{d}}y{\rm{d}}x = \mathop \smallint \limits_{x = 0}^L \left( {\mathop \smallint \limits_{y = 0}^d f\left( {x,y} \right){\rm{d}}y} \right){\rm{d}}x$ $ = A\mathop \smallint \limits_{x = 0}^L {\rm{d}}x$ $ = AL$ Hence, the volume $V = AL$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.