Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.1 Integration in Two Variables - Exercises - Page 847: 40

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} \frac{y}{{x + 1}}{\rm{d}}A = 8\ln 3$

Work Step by Step

We have $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} \frac{y}{{x + 1}}{\rm{d}}A$ and ${\cal R} = \left[ {0,2} \right] \times \left[ {0,4} \right]$. Write $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} \frac{y}{{x + 1}}{\rm{d}}A = \mathop \smallint \limits_{x = 0}^2 \left( {\mathop \smallint \limits_{y = 0}^4 y{\rm{d}}y} \right)\frac{1}{{x + 1}}{\rm{d}}x$ $ = \mathop \smallint \limits_{x = 0}^2 \left( {\frac{1}{2}{y^2}|_0^4} \right)\frac{1}{{x + 1}}{\rm{d}}x$ $ = 8\mathop \smallint \limits_{x = 0}^2 \frac{1}{{x + 1}}{\rm{d}}x$ $ = 8\left( {\ln \left( {x + 1} \right)|_0^2} \right)$ $ = 8\left( {\ln 3 + \ln 1} \right)$ $ = 8\ln 3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.