Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.1 Integration in Two Variables - Exercises - Page 847: 52

Answer

A function $F\left( {x,y} \right)$ satisfying $\frac{{{\partial ^2}F}}{{\partial x\partial y}} = 6{x^2}y$ is $F\left( {x,y} \right) = {x^3}{y^2} + C$, where $C$ is an integration constant. Using the result of Exercise 50, we evaluate $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} 6{x^2}y{\rm{d}}A = 16$

Work Step by Step

We have $\frac{{{\partial ^2}F}}{{\partial x\partial y}} = 6{x^2}y$ and ${\cal R} = \left[ {0,1} \right] \times \left[ {0,4} \right]$. To find $F\left( {x,y} \right)$ we take the double integral: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} \frac{{{\partial ^2}F}}{{\partial x\partial y}}{\rm{d}}y{\rm{d}}x = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} 6{x^2}y{\rm{d}}y{\rm{d}}x$ $ = \mathop \smallint \limits_x^{} \left( {\mathop \smallint \limits_y^{} 6{x^2}y{\rm{d}}y} \right){\rm{d}}x$ $ = \mathop \smallint \limits_x^{} \left( {3{x^2}{y^2}} \right){\rm{d}}x$ $ = {x^3}{y^2} + C$ So, $F\left( {x,y} \right) = {x^3}{y^2} + C$, where $C$ is an integration constant. Next, we evaluate $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} 6{x^2}y{\rm{d}}A$ Recall from the result of Exercise 50: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} f\left( {x,y} \right){\rm{d}}A = F\left( {b,d} \right) - F\left( {a,d} \right) - F\left( {b,c} \right) + F\left( {a,c} \right)$ where $f\left( {x,y} \right) = \frac{{{\partial ^2}F}}{{\partial x\partial y}}$ and ${\cal R} = \left[ {a,b} \right] \times \left[ {c,d} \right]$. We have $f\left( {x,y} \right) = \frac{{{\partial ^2}F}}{{\partial x\partial y}} = 6{x^2}y$. Since ${\cal R} = \left[ {0,1} \right] \times \left[ {0,4} \right]$, using the result of Exercise 50 we get $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} f\left( {x,y} \right){\rm{d}}A = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} 6{x^2}y{\rm{d}}A$ $ = F\left( {1,4} \right) - F\left( {0,4} \right) - F\left( {1,0} \right) + F\left( {0,0} \right)$ $ = 16$ Notice that the constant of integration $C$ cancels out in the calculation above. So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} 6{x^2}y{\rm{d}}A = 16$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.