Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.1 Integration in Two Variables - Exercises - Page 847: 42

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} {{\rm{e}}^{3x + 4y}}{\rm{d}}A \simeq 4654.26$

Work Step by Step

We have $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} {{\rm{e}}^{3x + 4y}}{\rm{d}}A$ and ${\cal R} = \left[ {0,1} \right] \times \left[ {1,2} \right]$. Write $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} {{\rm{e}}^{3x + 4y}}{\rm{d}}A = \mathop \smallint \limits_{y = 1}^2 \left( {\mathop \smallint \limits_{x = 0}^1 {{\rm{e}}^{3x}}{\rm{d}}x} \right){{\rm{e}}^{4y}}{\rm{d}}y$ $ = \mathop \smallint \limits_{y = 1}^2 \left( {\frac{1}{3}{{\rm{e}}^{3x}}|_0^1} \right){{\rm{e}}^{4y}}{\rm{d}}y$ $ = \frac{1}{3}\left( {{{\rm{e}}^3} - 1} \right)\mathop \smallint \limits_{y = 1}^2 {{\rm{e}}^{4y}}{\rm{d}}y$ $ = \frac{1}{3}\left( {{{\rm{e}}^3} - 1} \right)\left( {\frac{1}{4}{{\rm{e}}^{4y}}|_1^2} \right)$ $ = \frac{1}{{12}}\left( {{{\rm{e}}^3} - 1} \right)\left( {{{\rm{e}}^8} - {{\rm{e}}^4}} \right)$ $ = \frac{1}{{12}}\left( {{{\rm{e}}^{11}} - {{\rm{e}}^8} - {{\rm{e}}^7} + {{\rm{e}}^4}} \right)$ $ \simeq 4654.26$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.