Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.1 Integration in Two Variables - Exercises - Page 847: 38

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} {x^2}y{\rm{d}}A = \frac{4}{3}$

Work Step by Step

We have $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} {x^2}y{\rm{d}}A$ and ${\cal R} = \left[ { - 1,1} \right] \times \left[ {0,2} \right]$. Write $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} {x^2}y{\rm{d}}A = \mathop \smallint \limits_{x = - 1}^1 \left( {\mathop \smallint \limits_{y = 0}^2 {x^2}y{\rm{d}}y} \right){\rm{d}}x$ $ = \mathop \smallint \limits_{x = - 1}^1 {x^2}\left( {\frac{1}{2}{y^2}|_0^2} \right){\rm{d}}x$ $ = 2\mathop \smallint \limits_{x = - 1}^1 {x^2}{\rm{d}}x$ $ = 2\left( {\frac{1}{3}{x^3}|_{ - 1}^1} \right)$ $ = 2\left( {\frac{1}{3} + \frac{1}{3}} \right)$ $ = \frac{4}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.