Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.1 Integration in Two Variables - Exercises - Page 847: 41

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} {{\rm{e}}^x}\sin y{\rm{d}}A \simeq 1.87131$

Work Step by Step

We have $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} {{\rm{e}}^x}\sin y{\rm{d}}A$ and ${\cal R} = \left[ {0,2} \right] \times \left[ {0,\frac{\pi }{4}} \right]$. Write $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} {{\rm{e}}^x}\sin y{\rm{d}}A = \mathop \smallint \limits_{y = 0}^{\pi /4} \left( {\mathop \smallint \limits_{x = 0}^2 {{\rm{e}}^x}{\rm{d}}x} \right)\sin y{\rm{d}}y$ $ = \mathop \smallint \limits_{y = 0}^{\pi /4} \left( {{{\rm{e}}^x}|_0^2} \right)\sin y{\rm{d}}y$ $ = \left( {{{\rm{e}}^2} - 1} \right)\mathop \smallint \limits_{y = 0}^{\pi /4} \sin y{\rm{d}}y$ $ = \left( {{{\rm{e}}^2} - 1} \right)\left( { - \cos y|_0^{\pi /4}} \right)$ $ = \left( {{{\rm{e}}^2} - 1} \right)\left( { - \frac{1}{2}\sqrt 2 + 1} \right)$ $ \simeq 1.87131$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.