Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.1 Integration in Two Variables - Exercises - Page 847: 34

Answer

$\mathop \smallint \limits_0^8 \mathop \smallint \limits_1^2 \frac{{x{\rm{d}}x{\rm{d}}y}}{{\sqrt {{x^2} + y} }} \simeq 5.04615$

Work Step by Step

Write $\mathop \smallint \limits_0^8 \mathop \smallint \limits_1^2 \frac{{x{\rm{d}}x{\rm{d}}y}}{{\sqrt {{x^2} + y} }} = \mathop \smallint \limits_{y = 0}^8 \left( {\mathop \smallint \limits_{x = 1}^2 \frac{{x{\rm{d}}x}}{{\sqrt {{x^2} + y} }}} \right){\rm{d}}y$. Step 1. We hold $y$ constant and evaluate the inner integral with respect to $x$ The antiderivative of $\frac{x}{{\sqrt {{x^2} + y} }}$ with respect to $x$ is $\sqrt {{x^2} + y} $ because $\frac{\partial }{{\partial x}}\left( {\sqrt {{x^2} + y} } \right) = \frac{x}{{\sqrt {{x^2} + y} }}$ So, $S\left( y \right) = \mathop \smallint \limits_{x = 1}^2 \frac{{x{\rm{d}}x}}{{\sqrt {{x^2} + y} }} = \sqrt {{x^2} + y} |_1^2 = \sqrt {4 + y} - \sqrt {1 + y} $ Step 2. Integrate $S\left( y \right)$ with respect to $y$ Thus, $\mathop \smallint \limits_0^8 \mathop \smallint \limits_1^2 \frac{{x{\rm{d}}x{\rm{d}}y}}{{\sqrt {{x^2} + y} }} = \mathop \smallint \limits_{y = 0}^8 \left( {\sqrt {4 + y} - \sqrt {1 + y} } \right){\rm{d}}y$ $ = \left( {\frac{2}{3}{{\left( {4 + y} \right)}^{3/2}} - \frac{2}{3}{{\left( {1 + y} \right)}^{3/2}}} \right)|_0^8$ $ = \left( {\frac{2}{3}\cdot24\sqrt 3 - \frac{2}{3}\cdot27} \right) - \left( {\frac{2}{3}\cdot8 - \frac{2}{3}\cdot1} \right)$ $ = 16\sqrt 3 - 18 - \frac{{16}}{3} + \frac{2}{3}$ $ = 16\sqrt 3 - \frac{{68}}{3} \simeq 5.04615$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.