Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.1 Integration in Two Variables - Exercises - Page 847: 32

Answer

$\mathop \smallint \limits_1^2 \mathop \smallint \limits_2^4 {{\rm{e}}^{3x - y}}{\rm{d}}y{\rm{d}}x \simeq 14.9529$

Work Step by Step

Write $\mathop \smallint \limits_1^2 \mathop \smallint \limits_2^4 {{\rm{e}}^{3x - y}}{\rm{d}}y{\rm{d}}x = \mathop \smallint \limits_{x = 1}^2 \left( {\mathop \smallint \limits_{y = 2}^4 {{\rm{e}}^{3x - y}}{\rm{d}}y} \right){\rm{d}}x$. Step 1. We hold $x$ constant and evaluate the inner integral with respect to $y$ $S\left( x \right) = \mathop \smallint \limits_{y = 2}^4 {{\rm{e}}^{3x - y}}{\rm{d}}y = - {{\rm{e}}^{3x}}\left( {{{\rm{e}}^{ - y}}} \right)|_2^4 = - {{\rm{e}}^{3x}}\left( {{{\rm{e}}^{ - 4}} - {{\rm{e}}^{ - 2}}} \right)$ $S\left( x \right) = \left( {{{\rm{e}}^{ - 2}} - {{\rm{e}}^{ - 4}}} \right){{\rm{e}}^{3x}}$ Step 2. Integrate $S\left( x \right)$ with respect to $x$ Thus, $\mathop \smallint \limits_1^2 \left( {\mathop \smallint \limits_2^4 {{\rm{e}}^{3x - y}}{\rm{d}}y} \right){\rm{d}}x = \left( {{{\rm{e}}^{ - 2}} - {{\rm{e}}^{ - 4}}} \right)\mathop \smallint \limits_{x = 1}^2 {{\rm{e}}^{3x}}{\rm{d}}x$ $ = \left( {\frac{{{{\rm{e}}^{ - 2}} - {{\rm{e}}^{ - 4}}}}{3}} \right){{\rm{e}}^{3x}}|_1^2$ $ = \left( {\frac{{{{\rm{e}}^{ - 2}} - {{\rm{e}}^{ - 4}}}}{3}} \right)\left( {{{\rm{e}}^6} - {{\rm{e}}^3}} \right)$ $ = \frac{1}{3}\left( {{{\rm{e}}^4} - {{\rm{e}}^2} - {\rm{e}} + {{\rm{e}}^{ - 1}}} \right)$ $ = \frac{1}{{3{\rm{e}}}}\left( {{{\rm{e}}^5} - {{\rm{e}}^3} - {{\rm{e}}^2} + 1} \right)$ $ \simeq 14.9529$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.