Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.1 Integration in Two Variables - Exercises - Page 847: 46

Answer

$\mathop \smallint \limits_0^1 \mathop \smallint \limits_0^1 x{{\rm{e}}^{xy}}{\rm{d}}x{\rm{d}}y \simeq 0.718282$

Work Step by Step

We use Fubini's Theorem to change the order of integration and re-write the integral: $I = \mathop \smallint \limits_{y = 0}^1 \mathop \smallint \limits_{x = 0}^1 x{{\rm{e}}^{xy}}{\rm{d}}x{\rm{d}}y = \mathop \smallint \limits_{x = 0}^1 \left( {\mathop \smallint \limits_{y = 0}^1 x{{\rm{e}}^{xy}}{\rm{d}}y} \right){\rm{d}}x$ We evaluate first the inner integral with respect to $y$. $S\left( x \right) = \mathop \smallint \limits_{y = 0}^1 x{{\rm{e}}^{xy}}{\rm{d}}y$ The antiderivative of $x{{\rm{e}}^{xy}}$ with respect to $y$ is ${{\rm{e}}^{xy}}$ because $\frac{\partial }{{\partial y}}\left( {{{\rm{e}}^{xy}}} \right) = x{{\rm{e}}^{xy}}$ So, $S\left( x \right) = \mathop \smallint \limits_{y = 0}^1 x{{\rm{e}}^{xy}}{\rm{d}}y = {{\rm{e}}^{xy}}|_{y = 0}^1 = {{\rm{e}}^x} - 1$ Thus, $I = \mathop \smallint \limits_{x = 0}^1 \left( {\mathop \smallint \limits_{y = 0}^1 x{{\rm{e}}^{xy}}{\rm{d}}y} \right){\rm{d}}x$ $ = \mathop \smallint \limits_{x = 0}^1 \left( {{{\rm{e}}^x} - 1} \right){\rm{d}}x$ $ = {{\rm{e}}^x}|_0^1 - \mathop \smallint \limits_{x = 0}^1 {\rm{d}}x$ $ = {\rm{e}} - 1 - 1$ $ = e - 2$ $ \simeq 0.718282$ So, $\mathop \smallint \limits_0^1 \mathop \smallint \limits_0^1 x{{\rm{e}}^{xy}}{\rm{d}}x{\rm{d}}y \simeq 0.718282$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.