Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.1 Integration in Two Variables - Exercises - Page 847: 36

Answer

$\dfrac{1}{56}$

Work Step by Step

We solve the integral by using the Fundamental Theorem of Calculus. $\int_{0}^1 \int_{2}^3 \dfrac{1}{(x+4y)^3} \ dx \ dy= -\dfrac{1}{2} \times \int_{0}^1 [(x+4y)^{-2}]_2^3 \ dy\\= -\dfrac{1}{2} \times [\dfrac{-(3+4y)^{-1}}{4}+\dfrac{(2+4y)^{-1}}{4}]_0^1 \\=-\dfrac{1}{2} \times [\dfrac{-(3+4(1))^{-1}}{4}+\dfrac{(2+4(1))^{-1}}{4}+\dfrac{3^{-1}}{4}-\dfrac{2^{-1}}{4}] \\=\dfrac{1}{56}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.