Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.2 Limits and Continuity in Several Variables - Exercises - Page 772: 41

Answer

(a) We show that $|{x^3}| \le |x|\left( {{x^2} + {y^2}} \right)$, ${\ \ }$ $|{y^3}| \le |y|\left( {{x^2} + {y^2}} \right)$ (b) We show that $|f\left( {x,y} \right)| \le |x| + |y|$ (c) By Squeeze Theorem we obtain the limit: $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} f\left( {x,y} \right) = 0$

Work Step by Step

(a) Since ${y^2} \ge 0$, so ${x^2} \le {x^2} + {y^2}$ For $x>0$, $|x|{x^2} \le |x|\left( {{x^2} + {y^2}} \right)$ Since ${x^2} = |{x^2}|$, $|{x^3}| \le |x|\left( {{x^2} + {y^2}} \right)$ For $x<0$, $ - |x|{x^2} \ge - |x|\left( {{x^2} + {y^2}} \right)$ Since ${x^2} = |{x^2}|$, we may write the last equation as $ - |{x^3}| \le - |x|\left( {{x^2} + {y^2}} \right)$ Multiply both sides by $ - 1$ gives $|{x^3}| \le |x|\left( {{x^2} + {y^2}} \right)$ Hence, for any $x$ we obtain $|{x^3}| \le |x|\left( {{x^2} + {y^2}} \right)$. Similarly, $|{y^3}| \le |y|\left( {{x^2} + {y^2}} \right)$. Thus, $|{x^3}| \le |x|\left( {{x^2} + {y^2}} \right)$, ${\ \ }$ $|{y^3}| \le |y|\left( {{x^2} + {y^2}} \right)$ (b) We have $f\left( {x,y} \right) = \frac{{{x^3} + {y^3}}}{{{x^2} + {y^2}}}$. Taking the absolute value of both sides gives $|f\left( {x,y} \right)| = |\frac{{{x^3} + {y^3}}}{{{x^2} + {y^2}}}| = \frac{{|{x^3} + {y^3}|}}{{|{x^2} + {y^2}|}}$ By triangle inequality we have $|{x^3} + {y^3}| \le |{x^3}| + |{y^3}|$ and also $|{x^2} + {y^2}| \le |{x^2}| + |{y^2}| = {x^2} + {y^2}$ Thus, $|f\left( {x,y} \right)| \le \frac{{|{x^3}| + |{y^3}|}}{{{x^2} + {y^2}}}$ From part (a) we obtain $|{x^3}| \le |x|\left( {{x^2} + {y^2}} \right)$, ${\ \ }$ $|{y^3}| \le |y|\left( {{x^2} + {y^2}} \right)$ Thus, $|f\left( {x,y} \right)| \le \frac{{\left( {|x| + |y|} \right)\left( {{x^2} + {y^2}} \right)}}{{{x^2} + {y^2}}}$ Hence, $|f\left( {x,y} \right)| \le |x| + |y|$. (c) From part (b) we obtain $|f\left( {x,y} \right)| \le |x| + |y|$. We may write $0 \le |f\left( {x,y} \right)| \le |x| + |y|$ Taking the limit, we obtain $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} 0 \le \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} f\left( {x,y} \right) \le \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} |x| + |y|$ The two limits on both ends are equal to $0$. Therefore, by Squeeze Theorem we obtain the limit: $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} f\left( {x,y} \right) = 0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.