Answer
$$0$$
Work Step by Step
Given $$\lim _{(x, y) \rightarrow(4,2)} \frac{y-2}{\sqrt{x^{2}-4}} $$
Since $ \dfrac{y-2}{\sqrt{x^{2}-4}} $ is continuous on $ ( 4,2)$, then by substitution, we get
\begin{align*}
\lim _{(x, y) \rightarrow(4,2)} \frac{y-2}{\sqrt{x^{2}-4}} &=\lim _{(x, y) \rightarrow(4,2)} \frac{2-2}{\sqrt{16-4}} \\
&=0
\end{align*}