Answer
$$0$$
Work Step by Step
Since $(x+y+2) e^{-1 /\left(x^{2}+y^{2}\right)}$ is continuous at $(0,0)$, then
\begin{align*}
\lim _{(x, y) \rightarrow(0,0)}(x+y+2) e^{-1 /\left(x^{2}+y^{2}\right)}&=\lim _{(x, y) \rightarrow(0,0)}(x+y+2)\lim _{(x, y) \rightarrow(0,0)} e^{-1 /\left(x^{2}+y^{2}\right)}\\
&=(2)(0)=0
\end{align*}