Answer
$$-16e$$
Work Step by Step
Given $$\lim _{(z, w) \rightarrow(-2,1)} \frac{z^{4} \cos (\pi w)}{e^{z+w}} $$
Since $ \dfrac{z^{4} \cos (\pi w)}{e^{z+w}}$ is continuous every where, then by substitution, we get
\begin{align*}
\lim _{(z, w) \rightarrow(-2,1)} \frac{z^{4} \cos (\pi w)}{e^{z+w}}&=\lim _{(z, w) \rightarrow(-2,1)} \frac{(-2)^{4} \cos (\pi )}{e^{-1}}\\
&= -16e
\end{align*}