Answer
$$ e^{4} \ln (4)$$
Work Step by Step
Given $$\lim _{(x, y) \rightarrow(1,-3)} e^{x-y} \ln (x-y)$$
Since $e^{x-y} \ln (x-y)$ is continuous at $(1,-3)$, then by substitution, we get
\begin{align*}
\lim _{(x, y) \rightarrow(1,-3)} e^{x-y} \ln (x-y)&=\lim _{(x, y) \rightarrow(1,-3)} e^{4} \ln (4)\\
&= e^{4} \ln (4)
\end{align*}