Answer
$$0$$
Work Step by Step
Given $$ \lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}}$$
Consider the line $ y=mx$ that passes through $(0,0)$:
\begin{align*}
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}}&=\lim _{x\to 0 } \frac{mx^2}{\sqrt{x^{2}+m^{2}x^2}}\\
&=\lim _{x\to 0} \frac{mx}{\sqrt{1+m^2}}\\
&=0
\end{align*}