Answer
$$e^3$$
Work Step by Step
Given $$\lim _{(x, y) \rightarrow(2,1)} e^{x^{2}-y^{2}}$$
Since $ e^{x^{2}-y^{2}}$ is continuous at $(2,1)$, then by substitution, we get
\begin{align*}
\lim _{(x, y) \rightarrow(2,1)} e^{x^{2}-y^{2}}&=\lim _{(x, y) \rightarrow(2,1)} e^{4-1}\\
&=e^3
\end{align*}