Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.2 Limits and Continuity in Several Variables - Exercises - Page 772: 39

Answer

$$2$$

Work Step by Step

Given $$\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}+1}-1}$$ Rewriting, we have \begin{align*}f(x,y)&=\frac{x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}+1}-1}\\ &=\frac{\left(x^{2}+y^{2}\right)(\sqrt{x^{2}+y^{2}+1}+1)}{(\sqrt{x^{2}+y^{2}+1}-1)(\sqrt{x^{2}+y^{2}+1}+1)}\\ &=\frac{\left(x^{2}+y^{2}\right)(\sqrt{x^{2}+y^{2}+1}+1)}{\left(x^{2}+y^{2}+1-1\right)}\\ &=\sqrt{x^{2}+y^{2}+1}+1 \end{align*} Then \begin{align*} \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}+1}-1}&=\lim _{(x, y) \rightarrow(0,0)} \sqrt{x^{2}+y^{2}+1}+1\\ &=2 \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.