Answer
$$0$$
Work Step by Step
Given $$\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{1+y^{2}}$$
Since $ \dfrac{x^{2}+y^{2}}{1+y^{2}}$ is continuous at $(0,0)$, then by substitution, we get
\begin{align*}
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{1+y^{2}}&=\lim _{(x, y) \rightarrow(0,0)} \frac{0}{1+0}\\
&=0
\end{align*}