Answer
$$\frac{1}{5}$$
Work Step by Step
Given $$\lim _{(x, y) \rightarrow(3,4)} \frac{1}{\sqrt{x^{2}+y^{2}}}$$
Since $ \dfrac{1}{\sqrt{x^{2}+y^{2}}}$ is continuous at $( 3,4)$, then by substitution, we get
\begin{align*}
\lim _{(x, y) \rightarrow(3,4)} \frac{1}{\sqrt{x^{2}+y^{2}}}&=\lim _{(x, y) \rightarrow(3,4)} \frac{1}{\sqrt{9+16}}\\
&=\frac{1}{5}
\end{align*}