Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - 13.3 Dot Product and the Angle Between Two Vectors - Exercises - Page 666: 49

Answer

$51.91^{\circ}$

Work Step by Step

Let the points be A(10,8), B(0,10) and C(3,2). We calculate the vectors as follows: $\vec{AB}=⟨0-10,10-8⟩=⟨-10,2⟩$ $\vec{AC}=⟨3-10,2-8⟩=⟨-7,-6⟩$ Next, compute the lengths: $||\vec{AB}||=\sqrt {(-10)^{2}+2^{2}}=\sqrt {104}=2\sqrt {26}$ $||\vec{AC}||=\sqrt {(-7)^{2}+(-6)^{2}}=\sqrt {85}$ Now, calculate the dot product: $\vec{AB}\cdot\vec{AC}=⟨-10,2⟩\cdot⟨-7,-6⟩$ $=-10\times(-7)+2\times-6=58$ But $\vec{AB}\cdot\vec{AC}=||\vec{AB}||\,||\vec{AC}||\cos\theta$, where $\theta$ is the angle between $\overline{AB}$ and $\overline{AC}$. $\implies 58=2\sqrt {26}\times\sqrt {85}\times\cos\theta$ Or, $\theta=\cos^{-1}(\frac{58}{2\sqrt {26}\times\sqrt {85}})=51.91^{\circ}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.