Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - 13.3 Dot Product and the Angle Between Two Vectors - Exercises - Page 666: 47

Answer

Substituting $||{\bf{e}}|| = 1$, $||{\bf{f}}|| = 1$ and ${\bf{e}}\cdot{\bf{f}} = \frac{1}{8}$ in $||{\bf{e}} - {\bf{f}}|{|^2} = ||{\bf{e}}|{|^2} - 2{\bf{e}}\cdot{\bf{f}} + ||{\bf{f}}|{|^2}$ gives $||{\bf{e}} - {\bf{f}}|| = \frac{{\sqrt 7 }}{2}$

Work Step by Step

We have $||{\bf{e}} + {\bf{f}}|{|^2} = \left( {{\bf{e}} + {\bf{f}}} \right)\cdot\left( {{\bf{e}} + {\bf{f}}} \right) = {\bf{e}}\cdot{\bf{e}} + {\bf{f}}\cdot{\bf{e}} + {\bf{e}}\cdot{\bf{f}} + {\bf{f}}\cdot{\bf{f}}$ $||{\bf{e}} + {\bf{f}}|{|^2} = ||{\bf{e}}|{|^2} + 2{\bf{e}}\cdot{\bf{f}} + ||{\bf{f}}|{|^2}$ Since ${\bf{e}}$ and ${\bf{f}}$ are unit vectors, $||{\bf{e}}|| = 1$ and $||{\bf{f}}|| = 1$, and we have $||{\bf{e}} + {\bf{f}}|| = \frac{3}{2}$. So, $||{\bf{e}} + {\bf{f}}|{|^2} = 1 + 2{\bf{e}}\cdot{\bf{f}} + 1 = \frac{9}{4}$ ${\bf{e}}\cdot{\bf{f}} = \frac{1}{8}$ Next, we evaluate $||{\bf{e}} - {\bf{f}}|{|^2}$. $||{\bf{e}} - {\bf{f}}|{|^2} = \left( {{\bf{e}} - {\bf{f}}} \right)\cdot\left( {{\bf{e}} - {\bf{f}}} \right) = {\bf{e}}\cdot{\bf{e}} - {\bf{f}}\cdot{\bf{e}} - {\bf{e}}\cdot{\bf{f}} + {\bf{f}}\cdot{\bf{f}}$ $||{\bf{e}} - {\bf{f}}|{|^2} = ||{\bf{e}}|{|^2} - 2{\bf{e}}\cdot{\bf{f}} + ||{\bf{f}}|{|^2}$ Substituting $||{\bf{e}}|| = 1$, $||{\bf{f}}|| = 1$ and ${\bf{e}}\cdot{\bf{f}} = \frac{1}{8}$ in the last equation gives $||{\bf{e}} - {\bf{f}}|{|^2} = 1 - \frac{1}{4} + 1 = \frac{7}{4}$. Thus, $||{\bf{e}} - {\bf{f}}|| = \frac{{\sqrt 7 }}{2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.